First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
Atomic force microscopy (AFM) is a way to investigate the surface features of some materials. It works by “feeling” or “touching” the surface with an extremely small probe. This provides a ...
Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
AFAM operates by exciting the sample with ultrasonic waves while simultaneously probing the surface with an AFM tip. The ultrasonic waves cause the sample to vibrate, and the AFM tip detects these ...
Researchers have developed a deep learning algorithm for removing systematic effects from atomic force microscopy images, enabling more precise profiles of material surfaces. Atomic force microscopy, ...
Conductive atomic force microscopy (C-AFM) is a powerful nanoscale characterization technique that combines the high-resolution imaging capabilities of atomic force microscopy (AFM) with the ability ...
The world of nanoscale analysis has been revolutionized by the advent of electrical Atomic Force Microscopy (AFM) modes. New possibilities for measuring electrical properties with remarkable precision ...
AFM differs significantly from traditional microscopy techniques as it does not project light or electrons on the sample's surface to create its image. Instead, AFM utilizes a sharp probe while ...